Full metadata record
DC FieldValueLanguage
dc.contributor.authorIto, Kazufumien_US
dc.contributor.authorLai, Ming-Chihen_US
dc.contributor.authorLi, Zhilinen_US
dc.date.accessioned2014-12-08T15:09:37Z-
dc.date.available2014-12-08T15:09:37Z-
dc.date.issued2009-04-20en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2008.12.028en_US
dc.identifier.urihttp://hdl.handle.net/11536/7359-
dc.description.abstractAn augmented method based on a Cartesian grid is proposed for the incompressible Navier-Stokes equations in irregular domains. The irregular domain is embedded into a rectangular one so that a fast Poisson solver can be utilized in the projection method. Unlike several methods suggested in the literature that set the force strengths as unknowns, which often results in an ill-conditioned linear system, we set the jump in the normal derivative of the velocity as the augmented variable. The new approach improves the condition number of the system for the augmented variable significantly. Using the immersed interface method, we are able to achieve second order accuracy for the velocity. Numerical results and comparisons to benchmark tests are given to validate the new method. A lid-driven cavity flow with multiple obstacles and different geometries are also presented. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokes equationsen_US
dc.subjectEmbedding techniqueen_US
dc.subjectImmersed interface methoden_US
dc.subjectIrregular domainen_US
dc.subjectAugmented systemen_US
dc.subjectProjection methoden_US
dc.subjectLevel set representationen_US
dc.titleA well-conditioned augmented system for solving Navier-Stokes equations in irregular domainsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2008.12.028en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume228en_US
dc.citation.issue7en_US
dc.citation.spage2616en_US
dc.citation.epage2628en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000264291900018-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000264291900018.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.