标题: 绿脓杆菌PAO1中两个双功能酵素PslB和PA3346功能特性之研究与克雷白氏肺炎杆菌CG43 galU突变株在半乳糖压力下其转录体之分析
Characterization of PslB and PA3346, Two Bifunctional Enzymes in Pseudomonas aeruginosa PAO1, and Analysis of the Galactose Stress on Gene Expression of a Klebsiella pneumoniae CG43S3 ΔgalU Mutant
作者: 李蕙如
Lee, Hui-Ju
彭慧玲
张晃猷
Peng, Hwei-Ling
Chang, Hwan-You
生物科技系所
关键字: 绿脓杆菌;磷酸甘露糖异构酶;丝胺酸蛋白激酶;克雷白氏肺炎杆菌;半乳糖毒性;Pseudomonas aeruginosa;phosphomannose isomerase;Serine protein kinase;partner switching system;Klebsiella pneumoniae;galactose toxicity
公开日期: 2013
摘要: 本论文共分为三个章节,第一章和第二章主要是探讨绿脓杆菌PAO1中两个双功能酵素PslB与PA3346之酵素特性,第三章则是分析克雷白氏肺炎杆菌CG43尿嘧啶双磷酸葡萄糖焦磷酸化酶(GalU)突变株在半乳糖存在下其基因转录之变化。
绿脓杆菌中PslB是具有磷酸甘露糖异构酶(PMI)与鸟苷双磷酸甘露糖焦磷酸化酶(GDP-man PPase)的双功能酵素,分别参与鸟苷双磷酸甘露糖(GDP-man)合成的第一步和第三步催化反应。而目前为止,PslB的酵素活性及参与催化反应的重要胺基酸位置尚未被报导。在第一章的研究里,我们证实了PslB的确具有PMI与GDP-man PPase的酵素功能。GDP-man PPase 酵素反应需要正二价镁离子的帮助;PMI酵素反应则是需要正二价钴离子,而且其活性会被GDP-man所抑制。另外,2, 3-丁二酮(2,3-butanedione)能将PslB的PMI活性去活化,显示PslB上某个位置的精胺酸(Arg)可能在催化过程中扮演重要的角色。我们进一步利用点突变的实验技术,发现将PslB第408号位置的精胺酸更改为赖胺酸(Lys)或者丙胺酸(Ala)后,其PMI的活性则是完全消失。经由圆二色光谱的分析,野生株及定点突变株的PslB在蛋白质二级结构上未有改变。此结果证实PslB Arg408的确是参与催化反应的重要胺基酸,亦可做为未来了解PMI催化机制的初步依据。
第二章主要研究绿脓杆菌另一双功能酵素PA3346。先前的研究发现,HptB讯息传递路径在绿脓杆菌PAO1细菌群体移动与生物膜形成中扮演重要的调控角色。当细菌接受到环境的刺激,感应激酶蛋白(PA1611, PA1976, PA2824)会自我磷酸化,其磷酸根再经由HptB传递给下游的反应调控子PA3346。PA3346 N端磷酸化后,使得其丝胺酸蛋白磷酸酶活性增加,并将anti-sigma factor拮抗子PA3347 Ser56上之磷酸根去除。然而,能将PA3347 Ser56位置磷酸化的丝胺酸蛋白激酶仍然未知。经由蛋白质结构域分析,我们发现PA3346C端(PA3346-L408-A571)的结构域与枯草杆菌的SpoIIAB(丝胺酸蛋白激酶/anti-sigma factor)极为相似,因此推测PA3346(L408-A571)具有丝胺酸蛋白激酶的活性;而且,PA3346-PA3347可能与枯草杆菌SpoIIE-SpoIIAB-SpoIIAA的调控系统类似,形成所谓的partner-switching调控模组。本论文建构PA3346(L408-A571)与PA3347重组蛋白质,以进行试管内磷酸化反应。结果证实PA3346(L408-A571)能将PA3347 Ser56位置磷酸化,其丝胺酸蛋白激酶的活性需要Mg2+, Ca2+与Mn2+等正二价金属离子的帮助。在进行GST pull-down assay与GFP assembly assay后,我们发现PA3346(L408-A571)与PA3347蛋白质不管是在试管内或是在细菌体内,都能够互相结合。这些结果证实了PA3346(L408-A571)的确具有丝胺酸蛋白激酶/anti-sigma factor的功能。为了寻找参与partner-switching调控系统的sigma factor,我们亦进行了双分子萤光互补实验,而详细的分子调控机制需要进一步的探讨研究。
本论文的第三章,主要对克雷白氏肺炎杆菌galU突变株进行研究。当使用galU突变株进行半乳糖纸锭扩散实验时,纸锭周围会出现清晰的抑菌圈;将细菌培养在以2%甘油为主要碳源的M9培养液时,加入半乳糖会使得细菌生长缓慢并且有死亡的现象。半乳糖对克雷白氏肺炎杆菌galU突变株的毒性,主要是因为尿嘧啶双磷酸葡萄糖焦磷酸化酶(UDP-glc PPase)缺损,导致了有毒的半乳糖代谢产物累积。然而,这些代谢产物如何影响细菌基因表现及造成细菌死亡的原因仍然未知。因此,我们利用RNA-seq技术研究在半乳糖存在的状况下,克雷白氏肺炎杆菌galU突变株的基因表现变化。我们发现在半乳糖的存在下,galETKM、galP、lacYZ以及胺基酸合成相关的基因表现有上升的趋势;而甘油代谢(pduCDE)、铁离子摄取系统(sitABCD、feoABC)与12个调控因子(hns、csrA与10个转录调控子)的基因表现则被抑制。广泛型调控因子H-NS与CsrA控制许多细菌的重要生理作用,如碳源代谢、毒性、移动与应激反应系统。我们推测本研究使用的培养条件使得有毒的半乳糖代谢产物累积,并间接地抑制H-NS、CsrA与其它转录调控子的基因表现,影响细菌的转译与转录作用,最后因为生理系统紊乱导致死亡。
This thesis consists of three chapters. Chapter 1 and chapter 2 describe the functional studies of two bifunctional enzymes, PslB and PA3346, in Pseudomonas aeruginosa PAO1. Chapter 3 describes the results of transcriptome analysis of Klebsiella pneumoniae CG43S3 ∆galU mutant under galactose stress.
Pseudomonas aeruginosa pslB gene encodes a bifunctional enzyme phosphomannose isomerase/GDP-D-mannose pyrophosphorylase (PMI-GDP-man PPase). The enzyme catalyzes the first and third steps in the GDP-D-mannose biosynthetic pathway, an important precursor of many polysaccharides. So far, very little is known about PslB. In Chapter 1, we demonstrate that Pseudomonas aeruginosa pslB encodes a protein with GDP-man PPase/PMI dual activities. The GDP-man PPase activity is Mg2+dependent, whereas the PMI activity is Co2+dependent and could be inhibited by GDP-mannose in a competitive manner. Furthermore, the PMI activity could be inactivated by 2,3-butanedione suggesting the presence of a catalytic Arg residue. Site-specific mutations at R373, R472, R479, E410, H411, N433 and E458 increase the KM approximately 8- to 20-fold. The PMI activity of PslB was completely diminished with a R408K or R408A, reflecting the importance of this residue in catalysis. The CD spectra of R408A, R408K and wild type PslB are nearly identical, indicating that there is nearly no alterations of their secondary structures. Overall, these results provide a basis for understanding the catalytic mechanism of PMI.
In chapter 2, we focus on the other bifunctional enzyme PA3346. We have previously observed that the HptB-mediated phosphorelay pathway plays an important role in swarming phenotype and biofilm formation in P. aeruginosa PAO1. Upon activation by an environmental stress, sensor kinase (PA1611, PA1976 and PA2824) autophosphorylates itself and then transfers a phosphoryl group to HptB, which then relays the signal to response regulator PA3346. The phosphorylation on PA3346 N-terminal receiver domain results in an increase in its Ser protein phosphatase activity leading to dephosphorylation of the putative anti-sigma factor antagonist PA3347. While the target phosphorylation site on PA3347 has been shown to be located at Ser-56, the corresponding serine protein kinase and anti-sigma factor remain elusive. Protein domain analysis revealed that the C-terminal region of PA3346 (PA3346-L408-A571) contains conserved domains similar to the Ser protein kinase/anti-sigma factor SpoIIAB in Bacillus subtilis. Thus, we proposed that PA3346-PA3347 forms a partner-switching regulatory module as observed for SpoIIE-SpoIIAB-SpoIIAA in B. subtilis. This thesis has cloned and purified PA3346(L408-A571) and PA3347-GST for in vitro phosphorylation and GST pull-down assays. The results clearly demonstrate that PA3346(L408-A571) possesses a kinase activity toward PA3347 and the activity is divalent cation, especially Mg2+, Ca2+ and Mn2+ dependent. The PA3347-S56A mutant protein could not serve as a substrate for the kinase. In the GST pull-down assay, PA3346(L408-A571) could be co-eluted with PA3347-GST in the presence of ADP. As for the GFP fragment reassembly assay, the bacterial cells harboring the plasmids of PA3346(L408-A571)-CGFP and PA3347-NGFP display the green fluorescence signals. These data indicate that PA3346(L408-A571) is a serine protein kinase/anti-sigma factor playing a key role in the partner-switching regulatory module. In order to identify the specific sigma factor participated in this partner-switching system, in vivo bimolecular fluorescence complementation assay are performed and the detailed molecular regulation mechanism is under investigation.
Chapter 3 focuses on the response of K. pneumoniae CG43 ΔgalU mutant to the galactose stress. K. pneumoniae ΔgalU mutant, which is defective in UDP-Glc PPase, exhibited a growth-inhibition zone in the galactose disk diffusion assay. Galactose can increase the mortality when the ΔgalU mutant was cultivated in M9 minimal medium with 2% glycerol as the sole carbon source. The toxic galatose metabolite affecting the gene expression and causing the cell death remains unclear. Therefore, we investigate the gene expression profiles of the K. pneumoniae ∆galU mutant under the galactose stress by RNA-seq. The results indicate that galETKM, galP, lacYZ and genes responsible for biosynthesis of certain amino acids are upregulated in the presence of galactose. The gene expressions of glycerol metabolism (pduCDE), iron-acquisition systems (sitABCD and feoABC) and 12 regulatory factors (hns, csrA and 10 transcriptional regulators) are repressed. Notably, H-NS and CsrA are global regulatory proteins controlling a variety of physiological processes. Besides, E. coli csrA gene was shown to be essential for bacterial growth in both LB and minimal medium. The toxic galactose metabolites might indirectly repress the gene transcription of H-NS, CsrA and several other transcriptional regulators and lead to the bacterial growth arrest and death.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079328505
http://hdl.handle.net/11536/73971
显示于类别:Thesis


文件中的档案:

  1. 850501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.