完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | 简柏宇 | en_US |
dc.contributor.author | Chien, Po-Yu | en_US |
dc.contributor.author | 郭峻因 | en_US |
dc.contributor.author | Guo, Jiun-In | en_US |
dc.date.accessioned | 2014-12-12T02:43:32Z | - |
dc.date.available | 2014-12-12T02:43:32Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT070150243 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/75532 | - |
dc.description.abstract | 本论文提出一低复杂度的手势追踪演算法,本演算法不但可以提供手势的深度资讯,也能在严峻复杂的背景中正常执行。此外,本论文也提出了一些手势辨识方法来支援消费性智慧电子产品应用,例如智慧电视。 目前大部分的手势追踪演算法采用肤色过滤做为前处理步骤,但仅仅使用肤色过滤无法在含有相近肤色的背景下维持系统的功能性,例如:木质地板。 在本论文中,所提出的设计采用适应性的肤色过滤,此过滤方法可以根据目前追踪手势的颜色来调整过滤器的参数。本论文也提出一有效方法将手部区块从画面中切割出来,以利后续即时性的深度计算。 本论文也对演算法进行优化与加速,包括多执行绪与其他降低计算量之技巧,我们最终将设计实作在个人电脑与嵌入式平台上,个人电脑上的每秒帧数平均可达到VGA 解析度视讯每秒24张,而嵌入式平台上则可达到QVGA 解析度视讯每秒8张。 | zh_TW |
dc.description.abstract | This thesis proposes a low-complexity algorithm for hand tracking which can provide depth information and is able to work under critical backgrounds. Besides, some gesture controls are also proposed to support intelligent consumer electronics applications, like intelligent TV. Most methods of hand tracking apply skin color filter as one of pre-processing. However, only applying skin color filter as the segmentation step cannot maintain correct system functionality while the background containing pixel values which are close to skin color, like wooden floor. In the proposed design, we adopt adaptive skin color filter which can adaptively change its parameters according to the pixel values of the currently tracked object. This thesis also proposes an effective way to segment hands out of entire image and which can also facilitate depth estimation of tracked hands in real-time by dual-camera systems. We also apply multithreading and several techniques to reduce computational complexity in our design. The final algorithm has been implemented both on PCs and embedded systems. On PCs, we can reach the performance about VGA video at 24 frames per second. On the other hand, after reducing image size (i.e. QVGA video), we can achieve the performance about 8 frame per second on PandaBoard embedded system. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 手势追踪 | zh_TW |
dc.subject | 深度资讯 | zh_TW |
dc.subject | 手势控制 | zh_TW |
dc.subject | Hand tracking | en_US |
dc.subject | Depth information | en_US |
dc.subject | Gesture control | en_US |
dc.title | 复杂背景中具深度资讯之手势追踪与辨识 | zh_TW |
dc.title | Hand Tracking with Depth Information for Gesture Control in Complex Environments | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 电子工程学系 电子研究所 | zh_TW |
显示于类别: | Thesis |