完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorChang, Ching-Mingen_US
dc.date.accessioned2014-12-08T15:09:57Z-
dc.date.available2014-12-08T15:09:57Z-
dc.date.issued2009-02-28en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2007.06.081en_US
dc.identifier.urihttp://hdl.handle.net/11536/7613-
dc.description.abstractBy applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchronization is studied in this paper. Instead of current mixed error dynamics in which master state variables and slave state variables are presented, the nonlinear generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation. The elaborate nondiagonal Lyapunov function is applied rather than current monotonous square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both autonomous and nonautonomous double Mathieu systems are used as examples with numerical simulations. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleNonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov functionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chaos.2007.06.081en_US
dc.identifier.journalCHAOS SOLITONS & FRACTALSen_US
dc.citation.volume39en_US
dc.citation.issue4en_US
dc.citation.spage1959en_US
dc.citation.epage1974en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000265712000050-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000265712000050.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。