标题: | 结合时序姿态比对与模糊法则推论于人类动作辨识 Combining Temple Posture Matching and Fuzzy Rule Inference for Human Activity Recognition |
作者: | 吕志涛 张志永 电控工程研究所 |
关键字: | 模糊法则;人类动作辨识;Fuzzy Rule Inference;Human Activity Recognition |
公开日期: | 2005 |
摘要: | 人类动作辨识在自动监视系统、人机界面、居家安全照护系统和智慧型居家环境等方面的应用中占有主要的地位。许多人类动作辨识系统仅仅利用单一张影像的姿式来辨别该动作。但是,在时间序列上,姿式状态转换的关系是用来辨别人类动作的重要资讯。 在此篇论文中,我们结合时序姿态比对与模糊法则的方法来完成人类动作的识别。首先,每一张影像的前景人物利用一个基于前后影像比值而建立之统计背景模型抽取出来,并将抽取出来影像转换成二值化的影像格式;此方法可以减少照明对前景人物抽取的影响。为达到较精准与可分别度,二值化影像经由特征空间及标准空间转换,投影至标准空间。最后人类动作的识别在标准空间中完成。经由样板比对的方法可将三张影像序列,此影像序列乃从动作视讯5:1减低抽样获得,转换成转变成一组时序姿态序列。接着,利用模糊法则的推论方法,将这组时序姿态序列分类为某一个动作类别。模糊法则,不仅能够结合时间序列上的资讯,并且可以容忍不同人做相同动作上的差异。在我们的实验中,我们提出的动作辨认方法比利用HMM的方法,辨识正确率约增加5.4 %,达到91.8 %。 Human activity recognition plays an essential role in applications such as automatic surveillance systems, human-machine interface, home care system and smart home applications. Many of human activity recognition systems only used the posture of an image frame to classify an activity. But transitional relationships of postures embedded in the temporal sequence are important information for human activity recognition. In the thesis, we combine temple posture matching and fuzzy rule reasoning to recognize an action. Firstly, a foreground subject is extracted and converted to a binary image by a statistical background model based on frame ratio, which is robust to illumination changes. For better efficiency and separability, the binary image is then transformed to a new space by eigenspace and canonical space transformation, and recognition is done in canonical space. A three image frame sequence, 5:1 down sampling from the video, is converted to a posture sequence by template matching. The posture sequence is classified to an action by fuzzy rules inference. Fuzzy rule approach can not only combine temporal sequence information for recognition but also be tolerant to variation of action done by different people. In our experiment, the proposed activity recognition method has demonstrated higher recognition accuracy of 91.87% than the HMM approach by about 5.4 %. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009312543 http://hdl.handle.net/11536/78225 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.