Title: Observer-based synchronization for a class of unknown chaos systems with adaptive fuzzy-neural network
Authors: Wu, Bing-Fei
Ma, Li-Shan
Perng, Jau-Woei
電控工程研究所
Institute of Electrical and Control Engineering
Keywords: chaos;fuzzy-neural network (FNN);adaptive fuzzy-neural observer (AFNO);synchronization;robust
Issue Date: 1-Jul-2008
Abstract: This investigation applies the adaptive fuzzy-neural observer (AFNO) to synchronize a class of unknown chaotic systems via scalar transmitting signal only. The proposed method can be used in synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur'e system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network (FNN) in AFNO is adopted on line to model the nonlinear term in the transmitter. Additionally, the master's unknown states can be reconstructed from one transmitted state using observer design in the slave end. Synchronization is achieved when all states are observed. The utilized scheme can adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaos system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for the application of chaos synchronization.
URI: http://dx.doi.org/10.1093/ietfec/e91-a.7.1797
http://hdl.handle.net/11536/8587
ISSN: 0916-8508
DOI: 10.1093/ietfec/e91-a.7.1797
Journal: IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES
Volume: E91A
Issue: 7
Begin Page: 1797
End Page: 1805
Appears in Collections:Articles


Files in This Item:

  1. 000257990300032.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.