标题: 多元尺度奈微米大面积压印技术于显示器之应用 --- 子计画二:以奈米压印设计制作具光子晶体之高效能暨高指向性的发光二极体
Design and Fabrication of Light Emitting Diode with High Direction and Efficiency via Nano-Imprinting on Photonic Crystals of Surface
作者: 赵昌博
Chao Paul C.-P.
国立交通大学电机与控制工程学系(所)
关键字: 光子晶体;奈米压印;发光二极体;高效能;高指向性;Photonic crystals;nani-imprinting;light emitting diode;high efficiency;high directionality
公开日期: 2010
摘要: 本计画内容是使用奈米压印的方法来达到制作具光子晶体之高效能暨高指向性的发光二极
体。此计画所设计发展之高效能暨高指向性的发光二极体,将搭配子计画一所发展之奈米偏极光
学元件,发展出具高效能之显示器背光模组。
光子晶体(光子能隙结构晶体)的概念于1987 年首先由Yablonovitch 及John 分别被提出之
后,随着实验技术进步与精密仪器不断提升,以及各种制作相关结构的制程技术发展不断进步,
光子晶体的实验成果也更趋完整,光子晶体才受到注目。在光子晶体这种周期性的结构中,基本
上是在二维或三维空间中,让材料折射率(或介电常数)产生周期性变化的结构,这种结构模仿原
子在固态晶体中的排列。所以,类似电子于固态晶体中的能带结构,在光子晶体中就产生光子的
能带结构。在这一项计画中提升发光效率机制有二:一为利用表面周期性结构造成布拉格散射,
以减少全内反射情形发生;第二个则是利用光子晶体能隙将传导模态导引出来,以提升外部量子
效率。在另一方面,光子晶体因其周期结构对光子在传波状态(guiding mode)方向产生禁制能
带,抑制传波状态而使光倾向自正向发出,进而达到了光的高指向性的目的。本计画之第一年将
设计LED 磊晶层及光子晶体之结构材料与尺寸,并使用FDTD 进行光学模拟,以提高光效率与高
指向性。
本计画之第二年将制作原型LED 磊晶层外,并与子计画二、三合作设计开发奈米压印之模具
与技术以实现期望之光子晶体。主轴为利用各式各样之元件表面图案的压印来提高出光效率
(light extraction)以及利用光子晶体的特性提高光指向性(directionality),对发光二极体而
言,如应用在照明用途或显示器光源上,奈米压印法(nanoimprinting lithography)是极具潜力
的选择。近年来微奈米制造技术蓬勃发展下,各种创新制造技术如半导体表面加工制程、LIGA 制
程、奈米压印在各个领域不断提出。奈米压印技术于1995 年由美国普林斯顿大学电机系Stephen
Y.Chou 教授所提出,此技术具有成本低、制程简单、产量高的优势。最重要的是,利用奈米压印
可以不受到光源波长的限制,可以制作出解析度小于100nm 以下的特征图案,是一种极具潜力的
半导体制程技术。此外,对传统的光学微影技术而言,即使是轻微的曲面,也会因为景深的限制,
而无法有效的去进行图案的转移。对压印技术而言,因为是采用接触的方式进行图案化的动作,
因此对于非平整表面的图案转移步骤,将是较佳的选择。压印技术的第一步就是模具的制作,由
模具来定义特征图案。本子计画尝试搭配使用子计画三制作出微奈米级的钻石基模具;并分析制
程參数对模具深度的均匀性影响。并针对高温压印制程,进行制程參数测定与图案转移性优劣性
质做探讨,以达到好的光子晶体效果。本计画之第三年将利用田口法及基因演算法来增加发光二
极体的效率与高指向性,并增加制程良率。
This proposal is planned to use the method of nano-imprinting to fabricate
photonic crystals on the top surface of the LED, in order to render high efficiency and
directionality. The developed LEDs with high efficiency and directionality will be
utilized as the light sources in the backlight unit (BLU) with the nano-imprinted wire
grid polarizer (WGP), leading to a high-efficiency BLU.
The concept of photonic crystals was first introduced in 1987 by Yablonovitch and
John. With significant progress in fabrication technology and precision machine later,
the technology for fabricating varied structures of a LED become more complete with
associated experimetnal validation. The photonic crystals then draw much attention.
In the 2D or 3D periodic structures of a typical photonic crystals, the material
refraction indices become varied in periodic fashion. This variation mimic atomic
alignment in solid crystals. Therefore, it is similar to band gaps for the electrons in
solid crystals. In results, the photonic crstals generate the effects of band gaps for
photons. There are two mechanisms proposed in the porposal to increase the emission
efficiency: (1) induce Bragg diffraction by the periodic structure of photonic crystals
in order to mitigate internal reflections; (2) using the photonic crystals to induce
guiding mode in order to increase external quantum efficiency. On the other hand, due
to the band gap effects along the giuding mode caused by the periodic structres and
photonic crystals, the high directinality of the LED can be achieved. In the first year
of the project execution, the LED epitaxy and the dimensions, materials and structures
of Photonic crystals will be designed. The method finite difference time domain is
then used to simulate the optics, in order to raise light efficiency and directionality.
In the second year of project execution, a process of nano-imprinting will be
developed to realize the photonic crystals on LEDs. The method of nano-imprinting
was first introduced by Prof. Stephen Chou with merits of low cost, simpleness and
high productivity. Most importantly, the nano-imprinting is not limited by the
wavelength of light source and then capable of fabricating pattern with resolution less
than 100nm. This nano-imprinting is then a potentially high-value semi-conductor
processing technology. For photo-lithography, even a lightly-curved profile is difficult
ot fabricate due to the limitation of focusing depth. To nano-imprinting, however, the
patterning by the contact-imprinting technology is s better solution. The first step of
nano-imprinting is the manufacturing of a mold to realize the pattern. This proposal
will use the diamond mold fabricated by the sub-project 3, and then anlayze the
process parameters for fabrication quality for achieving optimum photonic crystals. In
the third year of the project execution, the Taguchi anf Genetic Algorithm will be used
to optimize the efficiency, directionality and yield rate.
官方说明文件#: NSC97-2221-E009-057-MY3
URI: http://hdl.handle.net/11536/100027
https://www.grb.gov.tw/search/planDetail?id=1987463&docId=324652
显示于类别:Research Plans


文件中的档案:

  1. 972221E009057MY3(第1年).PDF
  2. 972221E009057MY3(第3年).PDF
  3. 972221E009057MY3(第2年).PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.