标题: | 100至200伏特SOI制程高压积体电路之静电放电防护设计 On-Chip ESD Protection Design for High-Voltage ICs in 100 ~ 200V SOI Process |
作者: | 黄义杰 Huang, Yi-Jie 柯明道 Ker, Ming-Dou 电子工程学系 电子研究所 |
关键字: | 静电放电;绝缘层覆矽制程;高压应用;人体放电模式;机器放电模式;Electrostatic Discharge, ESD;silicon on insulator process, SOI process;Hugh-voltage application;Human-Body Model, HBM;Machine Model, MM |
公开日期: | 2015 |
摘要: | 现今智能电源技术已经发展并且电子产品中很多积体电路是在高压(HV)制程中被制造。例如车用IC等,通常使用高压制程,与低压(LV)元件相比,高压电晶体结构较为复杂,这是为了放大操作范围和崩溃电压,如此一来使得静电放电(ESD)防护的设计更加困难和具有挑战性。 在高压的静电放电防护设计中,常会使用横向扩散电晶体 (lateral diffused MOS, LDMOS),这是常见的高压电晶体,且与低压电晶体相比,在同样的布局大小下,通常高压静电防护元件的静电耐受度表现较差,所以使用高压防护元件,通常都会放大元件大小以达到要求的静电耐受度,并且要特别注意均匀导通性。 高压应用之静电防护元件提出利用低压P型场氧化层元件 (LVPFOD) 堆叠的构造在0.5微米高压绝缘层覆矽 (silicon on insulator, SOI) 制程实现。在面积与静电防护耐受度的考量下,低压的静电防护元件,在单位面积下,有比较好的静电防护耐受度,使用堆叠方法使整体的导通电压 (trigger voltage) 与持有电压 (holding voltage) 往上叠加,使它满足高压积体电路的需求,所以堆叠可以是最佳的方法之一。在高压静电放电防护设计中,持有电压是一个重要的考量,当在静电防护元件的持有电压低于供给的电压时,在应用上有可能会发生闩锁效应 (latchup)。实验并验证不同堆叠个数的低压P型场氧化层元件在高压应用下可以达到较高的静电防护耐受度,并且达到闩锁效应免疫。 在此篇论文中,探讨了堆叠的静电防护元件电阻值大小对人体模型和机器模型电流波形的影响效应,这解释了堆叠的静电防护元件电阻对峰值电流和波形震荡的影响非常明显,特别是在机器模型的测试中。因为机器模型中的负载电阻主要受到堆叠的元件影响,但是人体模型则是受到1.5千欧姆的负载电阻影响,所以机器模型量测到的静电防护耐受度随着堆叠的低压P型场氧化层元件个数增加而增加,而人体模型的静电防护耐受度则不会随着堆叠个数而改变,量测到相同的静电防护耐受度。 Nowadays, the smart power technology has been developed and many integrated circuits (ICs) of electrical products fabricated in a high-voltage (HV) process. Automotive ICs, power management ICs, and driver ICs for various display panels are commonly fabricated in a HV process. HV transistors are fabricated with complicated structure for enlarging the operating range and breakdown voltage, and that makes electrostatic discharge (ESD) protection design more difficult and challenging compared with the low-voltage (LV) devices. In ESD protection design for HV applications, it is common to use lateral diffused MOS (LDMOS) as an ESD protection device. LDMOS is a general HV transistor in a HV process, and its ESD robustness is worse than a LV device’s. Enlarging LDMOS’s total width can increase ESD robustness, but it should be aware of uniformity for ESD protection. In this thesis, ESD protection with LV p-type field-oxide devices (LVPFOD) in stacked configuration is proposed for HV applications in a 0.5-μm HV SOI process. For area and ESD robustness concerns, LV devices are proved with good ESD robustness per area. Stacking increases trigger voltage and holding voltage so that the devices meet the conditions. Therefore, stacking can be one of the best ways for ESD protection in HV applications. In ESD protection design for HV applications, holding voltage of a device is an important factor. When holding voltage of a device is lower than supply voltage, it is possible that latchup occurs in applications. Stacked LVPFOD with different stacking numbers have been verified in silicon chip to exhibit both of high ESD robustness and latchup-free immunity for HV applications. In this thesis, the effect of the stacked ESD protection device’s resistance on Human Body Model (HBM) and Machine Model (MM) current waveform is studied. It is shown that the stacked device’s resistance can have a significant impact on the peak current and damping waveform, especially for MM ESD test. Because the load resistance of MM is dominated by stacked device and the HBM is dominated by 1.5 kΩ, the MM ESD level increases by the numbers of stacked LVPFOD, and all the HBM ESD level are the same. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070250155 http://hdl.handle.net/11536/127359 |
显示于类别: | Thesis |