标题: | 以密度泛函理论研究镱矽及镱锗接触的萧特基位障 Schottky Barrier Heights of the YbSi/Si and YbGe/Ge Contacts: A Density-functional Study |
作者: | 林庭煦 Lin, Ting-Hsu 林炯源 Lin, Chiung-Yuan 电子工程学系 电子研究所 |
关键字: | 费米能级钉札;密度泛函理论;萧特基位障高度;投影态密度;X光绕射;Fermi level pinning;Density Functional Theory;Schottky barrier height;projected density of states;X-ray diffraction |
公开日期: | 2015 |
摘要: | 锗有比矽更高的载子迁移率,未来当传统矽金氧半场效电晶体达到微缩极限的时候,可用锗取代矽做为下一世代的通道材料,使元件效能得以继续提升。但是锗与金属的接面存在严重的费米能级钉札,接面费米能级被钉札在锗价带顶端附近,使金属-锗接触对电子呈现萧基特接触,而非适合做成电极的欧姆接触。本所合作的实验室提出用镱(Yb)金属在锗基板上做欧姆接触的方法,但从实验上并不清楚该接面由何种机制改善钉札问题。 本研究根据X光绕射结果提出一种泛用的接面建造方法,据此建造YbSi2-x(100)/Si(100)、Yb3Ge5(111)/Ge(101)、Yb3Ge5(302)/Ge(101)三种单晶接面。使用密度泛函理论进行接面结构弛豫,计算接面的萧特基位障高度。讨论接面结构的变化对位障的影响。YbSi2-x(100)/Si(100)的位障计算结果符合实验,而Yb3Ge5(111)/Ge(101)与Yb3Ge5(302)/Ge(101)的位障计算结果都不符合实验。分析Yb3Ge5/Ge接面未键结电子加入H原子的位障计算,得知计算与实验的误差源于计算的Yb3Ge5/Ge中存在相当多的悬键。 由密度泛函理论的假设与半导体物理的接面模型,解释了模拟接面与实际接面的能带排列不同的原因。此外,以态密度来串联接面的位障算法比另外两种位障算法需要更厚的接面,使用上计算量更大。不过该方法中,以相关系数对齐态密度的技巧可以用来过滤表面态,帮助判断能带边界。另外,在用来建造接面的计算技巧上,我们发现可以根据晶格的周期特性,提出调整应力与晶胞变换的方法,用来筛选重复结构,提升计算效率。 The carrier mobility of Ge is higher than that of Si. Such a semiconductor will very likely be the next-generation channel material to replace Si as the traditional Si-based MOSFET is approaching its scaling limit. This new development promises to continue the enhancement of device performance. However, the contact between Ge and a metal has strong Fermi-level pinning (to the valence band edge of Ge). As a result, the contact becomes the Schottky type rather than Ohmic, which is needed to serve as an electrodes. Our collaborated experimentalists report a method to achieve an Ohmic contact with a YbGe alloy-type metal, but their cannot reveal the mechanism of resolving the pinning issue. In this thesis, we report a general method to model the interface atomistic structures based on the X-ray diffraction result. We build ideal, perfectly crystallized interface structures YbSi2-x(100)/Si(100), Yb3Ge5(111)/Ge(101), and Yb3Ge5(302)/Ge(101). Then we employ density functional theory to simulate these systems, relaxing atomic positions and calculating the Schottky barrier height. We analyze how the interface structure affects the Schottky barrier height. By comparing the simulated results with the experimental data, we find that they agree each other only in the case YbSi2-x(100)/Si(100), while inconsistency arises in the other two, Yb3Ge5(111)/Ge(101) and Yb3Ge5(302)/Ge(101). We further study the effect of saturating the dangling bonds of the Yb3Ge5/Ge interface by appropriately adding H atoms, which indicates the calculation-experiment inconsistency may result from the dangling bonds at the Yb3Ge5/Ge simulated interfaces. We also discuss the difference of the band-alignment pictures between the first-principles simulation and the realistic system based on semiconductor device physics. We also show that in calculating the Schottky barrier heights, the density-of-state lineup method requires thicker layers of both Ge and YbGe. Although this method consumes more computational resources, it helps determine the band edges by excluding the interface states. In the technical aspect of constructing interface atomistic structures, we can identify the seemingly different but identical structures by figuring out the rules of the matrices of 〝strains〞 and 〝cell transforms〞, which reduces unnecessary repeating work. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079911569 http://hdl.handle.net/11536/127552 |
显示于类别: | Thesis |