Title: | A closed-form integral model of spiral inductor using the Kramers-Kronig relations |
Authors: | Chen, CC Huang, JK Cheng, YT 電子工程學系及電子研究所 Department of Electronics Engineering and Institute of Electronics |
Keywords: | Kramers-Kronig relations;radio frequency integrated circuit (RFIC);self-resonant frequency;spiral inductor |
Issue Date: | 1-Nov-2005 |
Abstract: | In this letter, a closed-form integral model is presented for the rectangular micromachined spiral inductor. The Kramers-Kronig relations provide an elegant theory to describe the inductor behavior without having complicated geometric analysis. Simulation and measurement results validate that the model can provide satisfactory prediction to the inductance of on-chip freely-suspended spiral inductors. Meanwhile, unlike conventional Greenhouse-based formulations, the self-resonant frequency of inductor can be predicted using the integral model. |
URI: | http://dx.doi.org/10.1109/LMWC.2005.859019 http://hdl.handle.net/11536/13124 |
ISSN: | 1531-1309 |
DOI: | 10.1109/LMWC.2005.859019 |
Journal: | IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS |
Volume: | 15 |
Issue: | 11 |
Begin Page: | 778 |
End Page: | 780 |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.