标题: | 前瞻性设计中解决性能及低功率议题的测试方法 Test methodologies for solving performanceand low-power issues on advanced designs |
作者: | 穆思邦 赵家佐 Mu, Szu-Pang Chao, Chia-Tso 电子工程学系 电子研究所 |
关键字: | 高性能;低耗电;速度分级;环状震荡器;测试;Performance;Low-Power;Speed binning;Ring oscillator;Testing |
公开日期: | 2016 |
摘要: | 随着制程技术不断在缩小,晶片的飘移性在不同的制程步骤下却没有随之缩小,像这样的制程变异性,尤其是晶片内部的制程变异性,会导致生产出来的晶片在速度及耗能源的飘移性极大,为了要维持一个可接受的良率,一个测试的流程叫做速度分级是用来区分这些生产晶片到不同速度的群集藉由其可以达到的最高操作速度,以此去将不同品质的晶片以不同的价格来卖。这篇博士论文就是希望在先进制程下能解决因制程飘移所造成在速度性能上与低耗电上的议题。 因此我们可以将接下来的章节分成低耗电主题 (章节一与二),以及速度性能主题 (章节三与四) 去做探讨。 在章节一,我们提出一个单一测试讯号输入的测试资料解密的架构,取名为STSD,其使用了技巧以复制测试资料切面来减少测试资料的容量,也同时减少了讯号的变异性在测试电路的路径上。 STSD架构的编码着重在去最大化测试资料切面的复制次数,以此减少测试时的能源损耗,我们更提出了个数学模型来评估其压缩倍率、测试时间及输入时的能源损耗,此数学模型可以帮助我们去决定最好的参数来设定STSD架构,使得我们不用去花费大量时间来做模拟评估。 在章节二,我们首先分析了使用粗质的复数闸门电压的电路中的电流源开关架构,然后提出了方法来测试这些电流源开关使否有断路错误,我们提出了一个特别为此设计的自动产生测试资料的演算法,来产生出一个会通过最长路径且同时能尽可能产生讯号的变异性在我们目标的电流源开关周遭。 在章节三,我们提出了一个模型拟合的架构来连结在晶片上的环状震荡器以及晶片可操作的最高速度,这个建构出来的模型可以使用在自动测试机台(auto test equipment) 软体上,藉此来预测晶片速度来达成晶片速度分级,这样的流程可以避免去使用大量的系统上测试,可以减少千倍以上的测试时间,其副作用为会将极为少量的晶片去摆放到较为保守的分级中,我们的实验是建构在360个测试晶片在一个28奈米、0.9电压及16GHz的手机晶片中。 在章节四,我们首先提出了一个模拟的环境来模拟晶片的最高操作速度及其环状震荡器结果,这些模拟晶片是用来在我们提出的环状震荡器摆放策略中使用,及验证结果的效益,接着使用一个模型拟合的架构来连结在晶片上的环状震荡器以及晶片可操作的最高速度,最后我们提出一个有效的方法来决定环状震荡器的最佳摆放策略为了预测晶片最高操作速度。 As the device feature size keeps on scaling, the device variability imposed by each process step does not scale accordingly, leading to greatly increased process variations for advanced technology nodes. Such significant process variations, especially the intra-die variations, result in a wide spread of the performance for each manufactured chip. In order to maintain an acceptable yield without losing performance, a testing procedure called speed binning is applied to classify the manufactured chips into different bins based on their maximum functional speed on the system, denoted as Fmax, and then sell the chips with different prices according to the speed bin. This dissertation is focused on solving the performance and low-power issues caused by the process variation on advanced designs. Therefore, we can separate the following sections into two issues, low-power issue (Chapter 1 and 2), and performance issue (Chapter 3 and 4). In chapter 1, we presents a single-test-input test-decompression scheme, named STSD, which utilize the technique of test-slice duplication to reduce the test-data volume as well as the signal transitions along scan paths. The encoding of STSD scheme focuses on maximizing the number of duplications made by a test-slice template. Mathematical models are also developed in this section to estimate the compression ratio, test-application time, and scan-in transitions caused by STSD scheme, and in turn can further help designers to efficiently identify the best configuration of STSD scheme instead of going through a time-consuming simulation process. In chapter 2, we study the usage of coarse-grain MTCMOS power switches, and then propose methods of testing stuck-open power switches. A specialized ATPG framework is proposed to generate a longest possible robust test while creating as many effective transitions in the switch-centered region as possible. In chapter 3, we presents a model-fitting framework to correlate the on-chip measured ring-oscillator (OPM) counts to the chip's maximum operating speed (Fmax). This learned model can be included in an ATE software to predict the chip speed for speed binning. Such a speed-binning method can avoid the use of applying any functional test and hence result in a 3-order test time reduction with a limited portion of chips placed into a slower bin compared to the conventional functional-test binning. The experiments were conducted based on 360 test chips of a 28nm, 0.9V, 1.6GHz mobile-application SoC. In chapter 4, we first propose a simulation framework to sample a chip's Fmax and it's OPM result. These samples are used to develop our methodology of OPM placement and to verify the effectiveness of an OPM placement. Then, a model-fitting framework is presented to correlate the OPMs' result to chip's Fmax. Finally, we propose a methodology to identify optimal placement of OPM for predicting Fmax. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079711651 http://hdl.handle.net/11536/139180 |
显示于类别: | Thesis |