标题: IHUIMiner: 一个能在渐增式资料库中高效探勘高效益物品集的演算法
IHUIMiner: An Efficient Algorithm for Mining High Utility Itemset in Incremental Database
作者: 林宗纬
黄俊龙
Lin,Tsung-Wei
网路工程研究所
关键字: 渐增式资料库;探勘演算法;高效益物品集;资料探勘;incremental database;mining algorithm;high utility itemset;data mining
公开日期: 2015
摘要: 随着近年来电子商务的兴起 ,如何在消费纪录中找出有用的消费资讯是电子商务公司的一大课题 ,电子商务公司认为商品的获利情况比销售量还要重要 ,因此 ,high utility itemset mining 比 frequent itemset mining 更适用于这类情况 。在现实中 ,资料库的更新频率相当频繁 ,而且一直对整个资料库重新 mining 会很没效率 。有鉴于此 ,我们在本论文中提出了一种能在渐增式资料库中高效探勘 high utility itemsets 的演算法 ,我们做了很多实验以测试我们演算法的效能 。实验结果指出 ,相较于以前的渐增式资料库演算法 ,我们的演算法用了较高的记忆体但拥有更高效率探勘 high utility itemsets 的能力。
Electronic commerce is getting popular in recent years. It is important for electronic commerce companies to find useful patterns from purchase records. Companies usually pay more attention in the profit (utility) earned rather than number of items sold. Thus, high utility itemset mining is more suitable for such cases than frequent itemset mining. In practice, the database is updated continuously, and re-mining the whole database is inefficient. In view of this, we propose in this thesis an algorithm to efficiently mine high utility itemsets in an incremental manner. In order to measure the performance of the proposed algorithm, several experiments have been conducted. Experimental results show that our algorithm is able to mine high utility itemsets more efficiently than prior algorithms on an incremental database at a cost of higher memory usage.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070256502
http://hdl.handle.net/11536/139362
显示于类别:Thesis