Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Ming-Hanen_US
dc.contributor.authorLiao, Yen-Kaien_US
dc.contributor.authorLin, I-Chenen_US
dc.date.accessioned2014-12-08T15:36:29Z-
dc.date.available2014-12-08T15:36:29Z-
dc.date.issued2014-09-01en_US
dc.identifier.issn1380-7501en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11042-013-1399-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/24816-
dc.description.abstractIn this paper, we present an example-based method to estimate the aging process of a human face. To tackle the difficulty of collecting considerable chronological photos of individuals, we utilize a two-layer strategy. Based on a sparse aging database, an EM-PCA-based algorithm with the personal guidance vector is first applied to conjecture the temporal variations of a target face. Since the subspace-based prediction may not preserve detailed creases, we propose synthesizing facial details with a separate texture dataset. Besides automatic simulation, the proposed framework can also include further guidance, e.g., parents\' impact vector or users\' indication of wrinkles. Our estimated results can improve feature point positions and user evaluation demonstrates that the two-layer approach provides more reasonable aging prediction.en_US
dc.language.isoen_USen_US
dc.subjectFace agingen_US
dc.subjectImage generationen_US
dc.subjectPattern analysisen_US
dc.titleHuman face aging with guided prediction and detail synthesisen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-013-1399-7en_US
dc.identifier.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.citation.volume72en_US
dc.citation.issue1en_US
dc.citation.spage801en_US
dc.citation.epage824en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000339889800036-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000339889800036.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.