完整后设资料纪录
DC 栏位语言
dc.contributor.author刘育诚en_US
dc.contributor.authorLiu, Yu-Chengen_US
dc.contributor.author张志永en_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.date.accessioned2014-12-12T01:55:44Z-
dc.date.available2014-12-12T01:55:44Z-
dc.date.issued2011en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079912563en_US
dc.identifier.urihttp://hdl.handle.net/11536/49264-
dc.description.abstract人体动作辨识系统在电脑视觉领域一直是很热门的研究与应用目标。在居家监控系统中最常见的方式是,使用固定式的摄影机,对室内的人物进行追踪与动作辨识。为了达到即时监控之目标,处理的演算法必须快速,而且又必须能够有效的分析影像。
在本论文中,动作辨识的目标是人体,为了更正确的撷取出人体部份,我们同时使用灰阶域与HSV色彩空间,建立两个背景模型,提升消除影像中阴影部分之影响,使得前后景之分离结果能够更完整。取得即时影像,撷取出的前景部份,经过特征空间转换与标准空间转换后,累积三张动作影像后,藉由预先学习而建立之模糊法则与时序动作姿态比对,完成人体动作之辨识。
研究对于较短周期的动作其取样频率改变是否获得更多资讯,更多的讯息可以使人体动作辨识更加的准确,并且对判断相同动作的规则,取其最大或者前三大、前五大、前七大和前九大相似度的动作法则平均值,藉由更多规则决定目前输入的影像与判别动作之间的相似度,确能更加准确判断人体动作。
zh_TW
dc.description.abstractHuman activity recognition system is now a very popular subject for research and application. Using a fixed camera to track a person and recognize his (her) activity is widely seen in home surveillance. For real-time surveillance, the embedded algorithms must be efficient and fast to meet the real-time constraint.
In the thesis, we build two background models, one is grayscale another is HSV color space that extract the human region correctly, and we also reduce the shadowing effect. For better efficiency, the binary image is transformed to a new space by eigenspace and canonical space transformation. After that, we gathered three consecutive down-sampled images to recognize the human actions by fuzzy rules.
We utilize different down-sampling rate for short-period action to obtain more information which is useful for the human action recognition. Furthermore, we investigate to the average value of maximal top-3, top-5, top-7 and top-9 firing strength of rules with the same action to recognize the human action. Using more rules to determine the similarity between the inputs and rules that can be more accurately determine human action.
en_US
dc.language.isoen_USen_US
dc.subject动作辨识zh_TW
dc.subject模糊法则zh_TW
dc.subject模糊判断zh_TW
dc.subject取样频率zh_TW
dc.subjectAction Recognitionen_US
dc.subjectFuzzy Ruleen_US
dc.subjectFuzzy Inferenceen_US
dc.subjectDown-sampling Rateen_US
dc.title人体动作辨识之推论与取样频率研究zh_TW
dc.titleInference and Down-sampling Rate study for Video-based Human Action Recognitionen_US
dc.typeThesisen_US
dc.contributor.department电控工程研究所zh_TW
显示于类别:Thesis


文件中的档案:

  1. 256301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.