标题: | 应用于多接面高效率矽薄膜太阳能电池之穿隧复合接面及中间反射层的开发 Development of Tunneling Recombination Junction and Intermediate Reflective Layer for High Efficiency Multi-Junction Thin-Film Solar Cells |
作者: | 张立欣 Chang, Li-Shin 蔡娟娟 纪国钟 Tsai, Chuan-Chuan Chi, Kuo-Chung 光电工程学系 |
关键字: | 多阶面太阳能电池;穿隧复合接面;中间反射层;非晶矽薄膜太阳能电池;Multi-Junction Thin-Film Solar Cells;Tunneling Recombination Junction;Intermediate Reflective Layer;a-Si:H Thin-Film Solar Cells |
公开日期: | 2012 |
摘要: | 此研究矽基薄膜太阳能电池由27.12 MHz电浆辅助化学气相沉积系统所制作。氢化非晶矽双接面电池相较于微晶矽双接面电池有成本较低的优势,同时相对于相同吸收层厚度的单接面非晶矽电池也有较高的稳定度。本论文研究穿隧复合接面来提升在氢化非晶矽双接面电池,利用不同的材料和结构做为穿隧复合接面帮助载子传输与复合进而提高电池的效率。首先,有掺杂的微晶矽当作穿隧复合接面可提供缺陷能阶提高载子复合,利用二氧化碳电浆形成很薄一层晶种层提升微晶矽薄膜的结晶率以达更好复合效果,同时也藉由提高氢流量比率使该层更易结晶进而减少厚度。此实验穿隧复合接面的优化厚度为23奈米,结晶率为53%,应用此接面电池的开路电压、短路电流密度、填充系数、转换效率分别提升至1.78 V、7.6 mA/cm2、72.8%及9.86%。 另一方面,氢化非晶矽锗之双接面太阳能电池具有能吸收长波长光谱的优势,本研究也着力于应用穿隧接面于非晶矽锗之双接面电池的研究。我们应用一层氢化微晶氧化矽当成中间反射层,以增加反射到顶部的光而达到较好的电流匹配使短路电流提升。此实验再兼顾导电率下提高氢化微晶氧化矽的氧含量,使其达到较小的折射率以增加反射量。此外,高氧含量的氢化微晶氧化矽也可当成种晶层去增加穿隧复合接面的结晶率。最后应用穿隧接面及中介反射层之矽锗双接面电池,其开路电压、短路电流密度、填充系数、转换效率分别提升为1.61 V、8.23 mA/cm2、68.2%及9.03%。 In this thesis, the Si-based thin-film tandem solar cells were prepared by a 27.12 MHz radio-frequency plasma-enhanced chemical vapor deposition (PECVD) system. In order to improve the performance of the a-Si:H / a-Si:H tandem solar cell, we introduced a microcrystalline silicon (μc-Si:H(n)) tunneling recombination junction (TRJ) layer between the top and the bottom cells to assist carrier recombination as well as the cell performance. The conductivity of μc-Si:H(n) film was the critical factor to affect cell performance. A thicker μc-Si:H(n) layers can have better conductivity but would increase the absorption loss in the cells. The TRJ was optimized to be thin and highly crystallized. In our results, the optimized thickness of the μc-Si:H(n) was 23 nm and the crystalline volume fraction (XC) was approximately 53%. In addition, TRJ was also employed in a-Si1-XGeX:H tandem cell due to its higher optical absorption in long wavelength region. In this structure, in order to increase the optical reflection for the top cell, we used the n-type hydrogenated microcrystalline silicon oxide (μc-SiOX:H(n)) as an intermediate reflecting layer (IRL) between a-Si:H top cell and a-Si1-XGeX:H bottom cell. The μc-SiOX:H(n) reduced the optical loss in a-Si1-XGeX:H bottom cells due to a wider bandgap. Moreover, the enhancement of the current gain in a-Si:H top cell was obtained due to the stronger reflection. The employment of μc-SiOX:H(n) reflective layer can also act as a seed layer for the TRJ afterwards to further increase the crystalline fraction. As a result, we used μc-Si:H(n) and/or μc-SiOX:H(n) layers as TRJ or IRL to obtain optimum cell efficiencies. The open circuit voltage (VOC), short circuit current density (JSC) fill factor (F.F.) and conversion efficiency (η) of a-Si:H / a-Si:H cell with the optimized μc-Si:H(n) TRJ were improved to 1.78 V, 7.6 mA/cm2, 72.8% and 9.86%, respectively. For a-Si:H / a-Si1-XGeX:H solar cell with μc-SiOX:H(n)/μc-Si:H(n) TRJ structure, the VOC, JSC, F.F. and η were improved to 1.61 V, 8.23 mA/cm2, 68.2% and 9.03%, respectively. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079924527 http://hdl.handle.net/11536/49807 |
显示于类别: | Thesis |