标题: | 应用于癫痫侦测之低能耗快速独立成分分析处理器之设计与实作 Design and Implementation of an Energy-Efficient Fast Independent Component Analysis Processor for Epileptic Seizure Detection |
作者: | 施谊欣 Shih, Yi-Hsin 阙河鸣 Chiueh, Herming 电信工程研究所 |
关键字: | 独立成分分析;脑电图;CMOS积体电路;功耗面积最小化;低能耗超大型积体电路;Indeoendent Component Analysis (ICA);Electroencephalography (EEG);CMOS integrated circuits;power-area minimization;energy-efficient VLSI |
公开日期: | 2013 |
摘要: | 独立成分分析能够分离多通道脑波中的杂讯和癫痫讯号以提升癫痫侦测之效能。快速独立成分分析是一种高效率计算独立成分分析的演算法。为了降低能量消耗,前处理采用特征值分解以降低独立成份的迭代次数。特征值分解利用高平行度架构快速运算。以近似的Jacobi演算法实现的特征值分解电路和过去的文献相比降低77.2%。储存资料的记忆体部分因为记忆体的选择和适当的wordlength省下95.6%功耗和51.7%面积。透过架构最佳化过程,我们找出晶片面积最小的架构。在latency constraint为0.1s的情况下,和没有经过最佳化的架构相比面积省下86.5%。core area是0.40mm^2,以90nm CMOS制程实现。快速独立成分分析处理器操作于0.32V时功耗为81.6W,未来也将整合于癫痫控制系统晶片。一段八通道256个采样的脑波需要84.2ms的运算时间。和文献相比,我们只花0.5%功耗,26.7%面积就能加速3.4倍。晶片的功能已经由病人脑波验证。 To improve the performance of epileptic seizure detection, independent component analysis (ICA) is applied to multi-channel signals to separate artifacts and signals of interest. FastICA is an efficient algorithm to compute ICA. To reduce the energy dissipation, eigenvalue decomposition (EVD) is utilized in the pre-processing stage to reduce the convergence time of iterative calculation of ICA components. EVD is computed efficiently through an array structure of processing elements running in parallel. Area-efficient EVD architecture is realized by leveraging the approximate Jacobi algorithm, leading to a 77.2% area reduction. By choosing proper memory element and reduced wordlength, the power and area of storage memory are reduced by 95.6% and 51.7%, respectively. The chip area is minimized through architectural transformations. Given the latency of 0.1s, an 86.5% area reduction is achieved compared to the direct-mapped architecture. Fabricated in 90nm CMOS, the core area of the chip is 0.40mm^2. The FastICA processor, part of an integrated epileptic control SoC, dissipates 81.6W at 0.32V. The computation delay of a frame of 256 samples for 8 channels is 84.2ms. Compared to prior work, 0.5% power dissipation, 26.7% silicon area, and 3.4 computation speedup are achieved. The performance of the chip was verified by human dataset. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079913627 http://hdl.handle.net/11536/73575 |
显示于类别: | Thesis |