标题: | 利用自制单光仪分离并产生波长118.2奈米之皮秒真空紫外光雷射 Using homemade monochromator to produce the isolated 118.2 nm picosecond vacuum ultraviolet laser |
作者: | 王政璇 Wang, Cheng-Shiuan 曾建铭 Tseng, Chien-Ming 应用化学系硕博士班 |
关键字: | 真空紫外光;单光仪;雷射;Ultraviolet light;Monochromator;Laser |
公开日期: | 2014 |
摘要: | 自从1970年代开始,雷射的成熟搭配非线性光学的发展,使得可应用的雷射光从长波长扩展到短波长波段,其中,真空紫外光波段是非常好的游离光源,且已经应用在许多研究上。举例来说,真空紫外光游离侦测红外光预解离光谱(Vacuum-Ultraviolet-Ionization-detected-infrared predissociation)可以用来了解气体簇族分子间的结构和相互作用,而光共振增强多光子离子化法(REMPI )搭配飞行时间质谱仪,可以用来侦测原子和小分子的光谱,另外也被广泛地运用在光分解离子成像(Velocity Map Imaging)上。在本论文中,作者和指导教授共同设计单光仪搭配三倍频腔体和一可产生波长354.7 nm的皮秒雷射(Repetition rate:1 kHz, Pulse duration:~20 ps),可将其三倍频产生波长118.2 nm 真空紫外光,并和入射光分离,相较于一般利用三倍频产生真空紫外光应用却没有和原入射光分离的方法,有着不被入射光影响的好处。接着参考Nicholas P. Lockyer 和 John C. Vickerman等人所整理之理论预测在不同条件下(光束大小和聚焦距离)产生最佳化波长118.2nm光所需之纯Xenon气体浓度,最后搭配我们所设计之侦测器量测产生的118.2 nm,在较低入射光能量(200、300J)时和理论预测相符,但随着能量增强,最大讯号点无呈现等比级数的成长且渐渐向低浓度移动,在此我们推测为光学柯尔效应(Optical Kerr Effect)产生的影响,限制了可产生的最大真空紫外光能量。 Since the beginning of the 1970s, with the development of nonlinear optics and laser system, light source for experiment can be expanded from long wavelength range to short wavelength band. Among them, vacuum ultraviolet light is a very good ionization source, and has already been used in many researches. For example, Vacuum-Ultraviolet-Ionization-detected-infrared predissociation spectroscopy (VUV-ID-IRPDS) of clusters can be used to understand intermolecular structures and interactions at the microscopic level, and the Resonance-enhanced Multiphoton Ionization (REMPI) technique with time-of-flight mass spectrometry (TOFMS) can be applied to the spectroscopy of atoms and small molecules. This technique is also widely used in the Velocity Map Imaging (VMI) for electron kinetic energy analysis in photoelectron photoion coincidence spectroscopy. In this thesis, we design a monochromator combined with a tripling cell to generate and isolate 118.2 nm vacuum ultraviolet light by tripling the third harmonic of a Nd:YAG laser (354.7 nm, repetition rate:1 kHz, pulse duration:~20 ps). Compare to those simple methods to get VUV light to do experiment, using the isolated VUV light has the benefits that the experimental result won’t be affected by the original pump light. Then, using the theoretical calculation that discussed by Nicholas P. Lockyer and John C. Vickerman et al to predict the optimized pressure of Xenon needed to generate the highest VUV light power. At last, using the detector we designed to detect 118.2 nm VUV light. The experimental result are not quite match what we expect, that is the generated VUV power is proportional to the cubic of pump power. We think that is because of Optical Kerr Effect, limiting the maximum energy of generated VUV light. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070152562 http://hdl.handle.net/11536/76260 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.