标题: 多视点视讯产生、传输与分析-子计画五:固定式与移动式多摄影机交通影片内容理解、分析与管理
Static and Mobile Multi-Camera Traffic Video Content Understanding, Analysis and Mangement
作者: 李素瑛
LEE SUH-YIN
国立交通大学资讯工程学系(所)
公开日期: 2013
摘要: 由于硬体价格降低,摄影机越来越普遍地架设在平面道路、高速公路以及私人车辆之上,但这些摄影机的资讯,只有在事故已经发生或是需要追查通缉犯时才会由人主动调阅查看,往往需要花费许多时间来看影片。因此许多研究致力于影片内容理解与分析来研发实用的工具系统,让使用者可以快速且有效的获得所要的影片资讯。目前多数研究着重于固定式摄影机的整合系统与单一移动式摄影机之影片分析,然而固定式摄影机由于经费限制,即使整合所有固定式摄影机,监控涵盖率依然不高,只能针对重点路段监控。而单一移动式摄影机之影片分析受限于单一视角,只能透过对应点推论得到较不准确的三维资讯。因此,本计画的研究目的除了使用影像低阶特征值来做物件切割、轨迹撷取与事件侦测外,更使用多重视角资讯来增强影片分析,并整合固定式与移动式多摄影机资讯,提升影片内容分析理解的准确率与涵盖率。
第一年我们研究如何从固定式与移动式影片中准确地切割移动物体并撷取轨迹,且提出以物件轨迹为基础之事件侦测之演算法,除此之外,我们研究近似复制影片检索来进行影片管理。第二年利用多视角技术来做影像分析,并将第一年之各式演算法修改使其适用于夜间、市区等较复杂环境,且利用轨迹与事件资讯来做近似复制影片检索。第三年我们考虑各种不同天气状态,并提出适用于不同天气状态之物件切割、轨迹撷取与事件侦测演算法,并整合移动式与固定式多摄影机资讯,建置各式交通影片内容理解、分析与管理系统。
With the affordable prices of digital capturing devices, more and more cameras are installed on plane road, highway and personal vehicles for traffic surveillance and event recording. Generally, people view the recorded videos manually when events happened, and the viewing process is a boring and time-consuming task. To provide effective and efficient video retrieval systems, many researchers put their eyes on video content understanding, analysis and indexing. The majority of the existing related works focus on two aspects: the integration of static multi-cameras video contents, and second, single-view mobile camera video content analysis. However, due to the limit of budgets, the cover rate of static cameras is not enough for traffic surveillance. Furthermore, single-view mobile video analysis is limited by incomplete information. To deal with the above problems, we use multi-view information for mobile video analysis, and integrate the static and mobile multi-camera video information to improve the effectiveness and cover rate of intelligent transportation systems.
First year, we focus on designing the algorithms for object segmentation, trajectory extraction, and trajectory-based event detection for both static and mobile daytime traffic videos. Besides, the near-duplicate video retrieval technique is developed for video database management. We further extend the algorithms developed in first year to complicated situations, such as nighttime and urban traffic videos in the second year. In addition, we apply the multi-view information for mobile video analysis to provide effective driver assistant systems. The trajectory- and event-based near-duplicate video retrieval is implemented for traffic video management. For the third year, we take various weather conditions into account to propose video analysis methods. Finally, we integrate the static and mobile multi-camera information to build traffic video understanding, analysis and management systems with high accuracy and high cover rate.
官方说明文件#: NSC101-2221-E009-087-MY3
URI: http://hdl.handle.net/11536/94034
https://www.grb.gov.tw/search/planDetail?id=2862519&docId=406914
显示于类别:Research Plans