标题: | 下世代光数据中心网路之关键核心技术-总计画及子计画一:下世代光数据中心网路之架构设计及模型化 Architecture Design and Modeling for Next-Generation Optical-Based Data Center Networks |
作者: | 杨启瑞 YUANG MARIA C. 国立交通大学资讯工程学系(所) |
关键字: | 数据中心网路(DCN);类Fat-Tree架构;光交换机系统;波长转换器;电/光缓冲器;光/电/光转换器;Data Center Networking (DCN);Fat-Tree-based Architecture;Optical Switch System;Wavelength Converters;Electrical and Optical Buffering;O/E/O device |
公开日期: | 2012 |
摘要: | 数据中心网路(DCN)被视为支援未来云端运算及兴起中之分散式计算的最重要技术之一。下世代数据中心网路最根本的挑战是如何将指数成长的巨量(如:数十万部)伺服器以有效率且低成本的方式连接在一起,同时满足数项重要的条件:高可扩展性、高吞吐量、高容错力、低延迟、无封包遗失及低功率消耗。由于有限的吞吐量及高功率消耗,目前使用电讯号的数据中心网路已经成为数据中心其持续成长的运算能力之主要技术瓶颈。同时,过去二十年来光网路技术在长途、都会及区域/存取网路领域中已成为连结通讯节点的卓越技术。众多研究人员投注大量心力于研究如何使用光通讯及光交换机技术实现数据中心网路,也就是所谓的光数据中心网路。所幸近来光元件(如:光/电/光转换器、被动阵列波导光栅交换器)的进步,光数据中心网路之低封包遗失、低功率耗散、低互相干扰及极高的吞吐量,都确保其能长远满足上述数项数据中心网路的需求。 对光数据中心网路而言,为满足数据中心网路的数项条件,必须先发展数项关键核心技术,其中包含:(1)数据中心及光交换机之架构与模型建构、(2)平行化排程及其最佳化、(3)低功耗波长转换技术、(4)高容量点对点光通讯技术,以上四项研究被统整于该整合型计画之中。在此(技术1)之三年计画中,我们共有两个研究主轴。在第一个研究主轴,我们关注于数据中心网路架构的设计及模型建构;传统的Fat-Tree数据中心网路架构为了克服资料传输的瓶颈,必须在树的根部使用昂贵的超高容量交换器,造成在支援巨量伺服器时的扩展性问题;此外,虽然Fat-Tree在理论上能够于任意两个伺服器间都提供高频宽,但于此种多分支且流量难以预测的网路中提供负载平衡却是极大的挑战。我们的计画目标是设计并建构一全新且可行的数据中心网路架构,以提供高吞吐量(低延迟)同时能使负载平衡、高可扩展性但无效能瓶颈、并且在低流量时动态调整网路拓墣以达到最低功耗。第二个研究主轴则是设计、分析一个在数据中心网路中使用的高效能光交换机系统并制作其原型。在此之前,我们曾设计过一个10Gb/s/wavelength的分波长多工光封包交换机系统,虽然此二系统之目的都是提供高吞吐量,但在该计画中的数据中心光交换机系统与之前的分波长多工光封包交换机系统有两个方面的不同:一是由于光/电/光转换器逐渐成熟,此数据中心光交换机系统将会采用电缓冲器(可能额外加上数个光纤延迟线光缓冲器);其二是此光交换机系统必须满足数据中心网路的低功耗要求。主要的设计策略将包含功率控制/管理及使用共用波长转换器。最后,此三年内要完成的各项工作总结于以下roadmap中。 Data center networking (DCN) has been envisioned as one of the most prominent technologies for supporting future cloud computing and ever-increasing distributed computing applications. A fundamental challenge in next-generation DCN is how to efficiently and cost-effectively interconnect an exponentially increasing number (e.g., hundreds of thousands) of servers while simultaneously meeting a multitude of requirements. The crucial requirements include high scalability, throughput, fault tolerance, low latency, no loss, and low power consumption. Due to limited throughput and large power consumption, electrical-based data center networking has become a technological bottleneck and a dominant factor limiting the continued scaling of processor performance. Meanwhile, optical networking has been a preeminent technology for connecting telecommunicating nodes in the long haul, metro, and local/access geographic areas over two decades. Together, researchers have recently drawn tremendous attention and interests to the realization of DCN by means of optical transmission and switching technologies, so called optical-based DCN. Thanks to recent advances in photonic devices (e.g., E/O/E devices, and passive Array Waveguide Grating (AWG) switches), such optical-based DCN has been shown capable of providing long-term solutions to the above limitations with low loss, low power dissipation, low interference, and exceedingly high throughput. For optical-based DCN, to satisfy the DCN requirements, several key enabling technologies must first be developed which involves investigating the following four research tasks (undertaken by this integrated project): (1) data-center and optical-switch architectures and modeling; (2) parallel scheduling and optimization; (3) low-power-consumption wavelength converter techniques; and (4) high-capacity point-to-point optical interconnect. In this three-year project (task one), we focus on two lines of research work. In the first line of work, we focus on the design and modeling of data-center architectures. The traditional fat-tree DCN architecture, to overcome bottlenecks, requires the use of expensive exceedingly high-capacity switches toward the root of the tree, resulting in a severe scalability problem when supporting an immense number of servers. Besides, although the fat-tree network can theoretically support high bandwidth between any pair of servers, unfortunately, balancing network traffic in such a network with highly divergent and unpredictable traffic matrices poses significant challenges. Our aim of the project is to design/model viable and novel architectures achieving high throughput (and low latency) with load balancing, high scalability with no performance bottleneck, and dynamic adjustment of network topology subject to minimize power consumption under low traffic demands. In the second line of work, we aim at the design, analysis and prototype of a high-performance data-center optical switching system (DOSS). We have earlier prototyped a 10-Gb/s/wavelength WDM optical packet switching system. While both systems are aimed to achieve high throughput, the data-center optical switching system in this project differs from the 10-Gb/s system on two perspectives. First, due to the maturity of O/E/O devices, electrical-buffering will be adopted in this optical switching system for DCN (possibly in addition to a handful of FDL-based optical buffer). Second, the optical switching system must be designed to meet the low power consumption requirement for DCN. Design strategies include power control/management schemes and sharing of wavelength converters. Finally, the tasks to be accomplished in these three years are summarized in the following roadmap. |
官方说明文件#: | NSC101-2221-E009-007-MY3 |
URI: | http://hdl.handle.net/11536/98432 https://www.grb.gov.tw/search/planDetail?id=2637426&docId=396859 |
显示于类别: | Research Plans |