标题: 模拟退火与基因演算于震测速度选取之最佳化之研究
The Study of Simulated Annealing and Genetic Algorithm for Optimization of Seismic Velocity Picking
作者: 黄国源
HUANG KOU-YUAN
国立交通大学资讯工程学系(所)
关键字: 模拟退火;基因演算法;全域最佳化;震测速度选取;动态修正;共中点叠加。;simulated annealing;genetic algorithm;global optimization;seismic velocity picking;normal move-out correction;common midpoint stacking.
公开日期: 2011
摘要: 我们采用模拟退火与基因演算法来解决反射震测讯号中速度分析的问题。模拟退火与基因演算法具有搜寻全域最佳解的能力。传统的震测速度选取是由地球物理专家透过观察 semblance image 来进行,得出时间与速度之间的关系函式,然而此过程耗时。我们把整个速度选取问题转化成为组合最佳化的问题,并建立能量函式,包含被选取点的semblance、数量、与interval velocity和velocity slope的限制条件,计算候选的time-velocity pairs的能量,进而利用模拟退火演算法与基因演算法找到全域最佳解,即最佳化的 stacking velocity与时间的对应关系。之后,可进一步执行动态修正及共中点叠加,以反映真实地层的原貌 (in time)。我们的研究有助于进一步的震测资料处理与解释。
We adopt two global optimization methods, simulated annealing method (SA) and genetic algorithm (GA), for seismic velocity picking in reflection seismic data. Conventional seismic velocity picking was made by geophysical experts through looking at the semblance image to pick several peaks representing the relation of time and stacking velocity, however it was a time consuming task. In this study, we consider the velocity picking problem as a combinatorial optimization problem and define an energy function consisting of the semblance of picked points, picking number, and the constraints of interval velocity and velocity slope for GA and SA. By using SA and GA to calculate the energy of a polyline, the best solution can be obtained. Furthermore, we apply the obtained polyline to do the normal move-out (NMO) correction and stacking. Our research can improve the further seismic data processing and interpretation.
官方说明文件#: NSC100-2221-E009-139
URI: http://hdl.handle.net/11536/99642
https://www.grb.gov.tw/search/planDetail?id=2342414&docId=369315
显示于类别:Research Plans